Силы, действующие на автомобиль

Для правильного и безопасного управления любым автомобилем необходимо знать физические законы его поведения на дороге. Эти знания помогают при правильной оценке конкретной дорожной ситуации выбрать оптимальное решение и, воздействуя на органы управления автомобиля, совершать безопасные маневрирования.

Примечание - [5]

Рисунок 1. - Силы, действующие на автомобиль

Различные силы, воздействующие на автомобиль, заставляют его двигаться и останавливаться. Силы, действующие на автомобиль, делятся на две группы. Первая группа оказывает сопротивление движению вторая - заставляет его двигаться.

  • 1. Сила тяжести - возникает под воздействием силы притяжения Земли и направлена вертикально вниз, распределяясь по всем осям и колесам автомобиля. Фактический вес транспортного средства оказывает давление на дорожное покрытие, и чем он больше, тем больше становится величина силы сцепления колес с дорогой. Эта сила оказывает существенное влияние в начале движения и в дальнейшем его процессе на ведущие колеса автомобиля.
  • 2. Силы реакции дорожного полотна - возникает из-за сил, действующих со стороны транспортного средства в местах соприкосновения колес с дорогой. Чем больше сила тяжести, действующая со стороны колеса автомобиля на дорожное полотно, тем больше сила ответной реакции со стороны дороги.
  • 3. Сила тяги всегда направлена в сторону движения автомобиля. Она возникает при передаче крутящего момента от двигателя к ведущим колесам, где они в свою очередь стараются переместить слои дорожного полотна назад. Чем больше крутящий момент двигателя и выше передаточное число коробки передач и главной передачи, чем меньше радиус колеса с учетом деформации шины, тем больше становится тяговая сила. Если величина тяговой силы превышает силы сцепления колес с дорогой, возникает пробуксовка ведущих колес. Поэтому начинать движение на скользкой дороге или по бездорожью, а также с перевозимым грузом необходимо с включением низшей передачи, когда сила тяги достигает наибольшей величины.
  • 4. Центробежная сила возникает в момент прохождения поворотов или смещения транспортного средства влево или вправо относительно проезжей части. В эти моменты автомобиль стремится сохранить первоначально заданное направление движения. Величина этой силы прямо пропорциональна массе транспортного средства и квадрату скорости и обратно пропорциональна радиусу вхождения в поворот. Направление ее действия - от центра тяжести в противоположную сторону поворота. Так, при вхождении в правый поворот центробежная сила старается отклонить автомобиль влево на встречную полосу, а при прохождении левого поворота -- вправо в сторону обочины. Уменьшить ее значение можно только снижением скорости движения и увеличением радиуса траектории входа в поворот. При неправильно выбранной скорости и радиусе поворота центробежная сила может развернуть автомобиль вокруг его оси, что приведет к заносу, отбросить в сторону и, наконец, опрокинуть.
  • 5. Сила сцепления шины с дорожным полотном возникает в процессе движения и зависит от многих факторов:
    • а) От качества покрытия дорожного полотна
    • б) От состояния дорожного полотна (сухое, влажное, заснеженное, обледенелое) Так при сухом покрытии сила сцепления намного больше, чем при обледенелом.
    • в) От технического состояния колес (конструкции шины, давления, рисунка протектора и его износа). При изношенном рисунке протектора и увеличенном давлении в колесе сила сцепления с дорогой уменьшается.
    • г) От массы автомобиля -- с увеличением массы транспортного средства сила сцепления с дорогой увеличивается.
    • д) От скорости движения -- с ее увеличением уменьшается сила сцепления с дорожным полотном.

Водителю необходимо учитывать все эти факторы, так как когда сила тяги на колеса автомобиля превышает силу сцепления с дорожным полотном, может произойти пробуксовка колес, а на скользкой дороге возможны заносы и выход из-под контроля управления автомобиля.

6. Сила сопротивления воздуха направлена в сторону, противоположную движению транспортного средства. Она возникает в процессе движения за счет давления на воздух поверхностями автомобиля, поэтому многое зависит от аэродинамической конструкции формы кузова автомобиля. Эта сила возрастает с увеличением скорости движения.

Сила сопротивления качению возникает в процессе движения при трении шин автомобиля о поверхность дороги, вследствие чего возникают трения в передаточном механизме (в подшипниках колес). Эта сила прямо пропорциональна массе транспортного средства и коэффициенту сопротивления качению. Коэффициент сопротивления качению зависит от состояния дороги и определяется опытным путем. Сила сопротивления качению направлена в сторону, противоположную движению.

Примечание - [5]

Рисунок 2. - Силы, действующие на автомобиль при подъеме

Автомобильные дороги состоят из чередующихся между собой подъемов и спусков и крайне редко имеют горизонтальные участки большой длины. Крутизну подъема характеризуют величиной угла а (в градусах) или величиной уклона дороги t, представляющей собой отношение превышения Н к заложению В (см. рис. 2):

i=H/B = tg a(1)

Вес автомобиля G, движущегося на подъеме, можно разложить на две-составляющие силы: G·sinб, направленную параллельно дороге, и G·cosб, перпендикулярную к дороге. Силу G sinб называют силой сопротивления подъему и обозначают Рб.

На автомобильных дорогах с твердым покрытием углы подъема невелики и не превышают 4 -- 5°. Для таких малых углов можно считать

i = tgб~ sinб, тогда Ра -- G sinб = Gi.

При движении на спуске сила Ра имеет противоположное направление и действует как движущая сила. Угол а и уклон i считают положительными на подъеме и отрицательными при движении на спуске.

У современных автомобильных дорог нет четко выраженных участков с постоянным уклоном; их продольный профиль имеет плавные очертания. На таких дорогах уклон и сила Р непрерывно меняются в процессе движения автомобиля.

Сопротивление неровностей. Ни одно дорожное покрытие не является абсолютно ровным. Даже новые цементобетонные и асфальтобетонные покрытия имеют неровности высотой до 1 см. Под действием динамических нагрузок неровности быстро увеличиваются, уменьшая скорость автомобиля, сокращая срок его службы и увеличивая расход топлива. Неровности создают дополнительное сопротивление движению.

При попадании колеса в длинную впадину оно ударяется о ее дно и подбрасывается вверх. После сильного удара колесо может отделиться от покрытия и снова удариться (уже с меньшей высоты), совершая затухающие колебания. Переезд через короткие впадины и выступы сопряжен с дополнительной деформацией шины под действием силы, возникающей при ударе о выступ неровности. Таким образом, движение автомобиля по неровностям дороги сопровождается непрерывными ударами колес и колебаниями осей и кузова. В результате происходит дополнительное рассеивание энергии в шине и деталях подвески, достигающее иногда значительных величин. [5]

Дополнительное сопротивление, вызываемое неровностями дороги, учитывают, условно увеличивая коэффициент сопротивления качению.

Величины коэффициента сопротивления качению f и уклона i в совокупности характеризуют качество дороги. Поэтому часто говорят о силе сопротивления дороги Р, равной сумме сил Рf и Ра:

Р = Pf -f Ра = G (f cosб-f sinб) ~G (f + i)(2)

Выражение, стоящее в скобках, называют коэффициентом сопротивления дороги и обозначают буквой Ф. Тогда сила сопротивления дороги: Р = G (f cosб-f sinб) = G ф.

При движении автомобиля на него оказывает сопротивление и воздушная среда. Затраты мощности на преодоление сопротивления воздуха складываются из следующих величин:

  • -- лобового сопротивления, появляющегося в результате разности давлений спереди и сзади движущегося автомобиля (около 55 -- 60% всего сопротивления воздуха);
  • -- сопротивления, создаваемого выступающими частями: подножками, крыльями, номерным знаком (12 -- 18%);
  • -- сопротивления, возникающего при прохождении воздуха через радиатор и подкапотное пространство (10-15%);
  • -- трения наружных поверхностей о близлежащие слои воздуха (8 -- 10%);
  • -- сопротивления, вызванного разностью давлений сверху и снизу автомобиля (5 -- 8%).

При увеличении скорости движения увеличивается и сопротивление воздуха.

Прицепы вызывают увеличение силы сопротивления воздуха вследствие значительного завихрения воздушных потоков между тягачом и прицепом, а также из-за увеличения наружной поверхности трения. В среднем можно принять, что применение каждого прицепа увеличивает это сопротивление на 25% по сравнению с одиночным автомобилем.

Сила инерции [15]

Кроме сил сопротивления дороги и воздуха влияние на движение автомобиля оказывают силы инерции Р. Всякое изменение скорости движения сопровождается преодолением силы инерции, и ее величина тем больше, чем больше вес автомобиля:

P=G*j/g(4 )

Время равномерного движения автомобиля обычно мало по сравнению с общим временем его работы. Так, например, при работе в городах автомобили движутся равномерно 15 -- 25% времени. От 30% до 45% времени занимает ускоренное движение автомобиля и 30 -- 40% -- движение накатом и торможение. При трогании с места и увеличении скорости автомобиль движется с ускорением -- его скорость при этом неравномерна. Чем быстрее автомобиль увеличивает скорость, тем больше ускорение автомобиля. Ускорение показывает, как за каждую секунду возрастает скорость автомобиля. Практически ускорение автомобиля достигает 1 -- 2 м/с2. Это значит, что за каждую секунду скорость будет возрастать на 1 -- 2 м/с.

Сила инерции изменяется в процессе движения автомобиля в соответствии с изменением ускорения. Для преодоления силы инерции расходуется часть тяговой силы. Однако в тех случаях, когда автомобиль движется накатом после предварительного разгона или при торможении, сила инерции действует по направлению движения автомобиля, выполняя роль движущей силы. Принимая это во внимание, некоторые труднопроходимые участки пути можно преодолевать с предварительным разгоном автомобиля.

Величина силы сопротивления разгону зависит от ускорения движения. Чем быстрее разгоняется автомобиль, тем большей становится эта сила. Ее величина меняется даже при трогании с места. Если автомобиль трогается плавно, то сила эта почти отсутствует, а при резком трогании она может даже превысить тяговую силу. Это приведет или к остановке автомобиля, или к буксованию колес (в случае недостаточной величины коэффициента сцепления).

В процессе работы автомобиля непрерывно меняются условия движения: тип и состояние покрытия, величина и направление уклонов, сила и направление ветра. Это приводит к изменению скорости автомобиля. Даже в наиболее благоприятных условиях (движение по усовершенствованным автомагистралям вне городов и населенных пунктов) скорость автомобиля и тяговая сила редко остаются неизменными в, течение продолжительного времени. На средней .скорости движения (определяемой как отношение пройденного пути ко времени, затраченному на прохождение этого пути с учетом времени остановок в пути) сказывается помимо сил сопротивления влияние весьма большого количества факторов. К ним относятся: ширина проезжей части, интенсивность движения, освещенность дороги, метеорологические условия (туман, дождь), наличие опасных зон (железнодорожные переезды, скопление пешеходов), состояние автомобиля и т. д.

В сложных дорожных условиях может случиться так, что сумма всех сил сопротивления превысит тяговую силу, тогда движение автомобиля будет замедленным и он может остановиться, если водитель не примет необходимых мер.

 
< Пред   СОДЕРЖАНИЕ   Загрузить   След >