Меню
Главная
Авторизация/Регистрация
 
Главная arrow Информатика arrow Автоматизированный системно-когнитивный анализ и его применение для управления социально-экономическими системами в АПК

Получение матрицы знаний (информативностей)

На основе анализа матрицы условных и безусловных вероятностей наблюдений признаков по классам и всей выборке можно сравнивать признаки друг с другом по их роли для сравнения классов друг с другом и конкретных объектов с обобщенными классами. При этом существует три основных группы признаков:

Группа первая. К этой группе относятся признаки, которые в одном классе встречаются, а в других нет. Это детерминистские признаки; обнаружение такого признака у объекта однозначно определяет его принадлежность к соответствующему классу.

Группа вторая. В этой группе объединены признаки, которые в одном классе встречаются чаще, чем в других. Это статистические признаки; обнаружение такого признака у объекта несет некоторую информацию о его принадлежности к соответствующему классу.

Группа третья. К этой группе относятся признаки, которые в разных классах встречаются с одной и той же вероятностью. Обнаружение этих признаков у объекта не несет никакой информации о его принадлежности к тем или иным классам.

Таким образом, если анализировать условные вероятности (или процентные распределения) признаков по классам, то можно вынести правдоподобные суждения о принадлежности объектов, обладающих этими признакам к тем или иным классам.

Однако такой метод сравнения имеет по крайней мере два существенных недостатка.

  • 1. Для того чтобы отнести признак к одной из вышеперечисленных групп, нужно сравнивать вероятности его наблюдения по классам, т.е. каждый раз при таком сравнении выполнять соответствующую необходимую для этого работу.
  • 2. Отнесение признака ко второй группе еще не позволяет использовать этот признак для идентификации объекта; необходимо оценить количество информации, которое содержится в факте обнаружения у объекта этого признака о принадлежности этого объекта к каждому из классов, что требует применения математического и численного методов.

По поводу первого недостатка можно сказать, что для реальных задач большой размерности выполнение этого сравнения вручную практически невозможно, а значит невозможно и использование результатов этого сравнения для решения задач идентификации, прогнозирования и поддержки принятия решений, а тем более для исследования предметной области путем изучения ее модели. Все это обусловлено тем, что результат сравнения вероятностей встречи признака по классам не представляется при ручной обработке в количественной форме некоторого одного числа: частного критерия, величина и знак которого отражали бы результат такого сравнения.

Второй недостаток преодолевается методом, который предложен А.Харкевичем в выражениях (11) и (12) и уточнен в работе [7] в системном обобщении этих выражений (18). В этом методе предложено сравнивать не условные вероятности наблюдения признаков по различным классам друг с другом, а условную вероятность наблюдения признака по классу с безусловной вероятностью его наблюдения по всей выборке.

Это предложение по сути полностью соответствует известному статистическому методу отклонений от средних и нормативному подходу, когда в качестве базы сравнения выбирается норма, т.е. среднее по всей группе. На основе этого подхода формируются и критерии сравнения, т.е. можно сказать, что критериальный подход изначально основан на нормативном.

Здесь - это среднее количество знаний в i-м значении фактора:

Количественные значения коэффициентов Iij являются знаниями о том, что "объект перейдет в j-е состояние" если "на объект действует i-е значение фактора".

Принципиально важно, что эти весовые коэффициенты не определяются экспертами на основе опыта интуитивным неформализуемым способом, а рассчитываются непосредственно по эмпирическим данным на основе теоретически обоснованной модели, хорошо зарекомендовавшей себя на практике при решении широкого круга задач в различных предметных областях.

Когда количество информации Iij > 0 - i-й фактор способствует переходу объекта управления в j-е состояние, когда Iij < 0 - препятствует этому переходу, когда же Iij = 0 - никак не влияет на это. В векторе i-го фактора (строка матрицы информативностей) отображается, какое количество информации о переходе объекта управления в каждое из будущих состояний содержится в том факте, что данный фактор действует. В векторе j-го состояния класса (столбец матрицы информативностей) отображается, какое количество информации о переходе объекта управления в соответствующее состояние содержится в каждом из факторов.

Таким образом, матрица знаний (информативностей), является обобщенной таблицей решений, в которой входы (факторы) и выходы (будущие состояния объекта управления) связаны друг с другом не с помощью классических (Аристотелевых) импликаций, принимающих только значения: "истина" и "ложь", а различными значениями истинности, выраженными в битах, и принимающими значения от положительного теоретически-максимально-возможного ("максимальная степень истинности"), до теоретически неограниченного отрицательного ("степень ложности").

Фактически предложенная модель позволяет осуществить синтез обобщенных таблиц решений для различных предметных областей непосредственно на основе эмпирических исходных данных и продуцировать прямые и обратные правдоподобные (нечеткие) логические рассуждения по неклассическим схемам с различными расчетными значениями истинности, являющимися обобщением классических импликаций.

Таким образом, данная модель позволяет рассчитать, какое количество информации содержится в любом факте о наступлении любого события в любой предметной области, причем для этого не требуется повторности этих фактов и событий. Если данные повторности осуществляются и при этом наблюдается некоторая вариабельность значений факторов, обуславливающих наступление тех или иных событий, то модель обеспечивает многопараметрическую типизацию, т.е. синтез обобщенных образов классов или категорий наступающих событий с количественной оценкой степени и знака влияния на их наступление различных значений факторов. Причем эти значения факторов могут быть как количественными, так и качественными и измеряться в любых единицах измерения, в любом случае в модели оценивается количество информации, которое в них содержится о наступлении событий, переходе объекта управления в определенные состояния или просто о его принадлежности к тем или иным классам.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Право
Психология
Религиоведение
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее