Взаимосвязь системной меры целесообразности информации со статистикой 2 и новая мера уровня системности предметной области

Статистика 2 представляет собой сумму вероятностей совместного наблюдения признаков и объектов по всей корреляционной матрице или определенным ее подматрицам (т.е. сумму относительных отклонений частот совместного наблюдения признаков и объектов от среднего:

  • (33)
  • (34)

Отметим, что статистика 2 математически связана с количеством информации в системе признаков объекта о его принадлежности к классу распознавания в соответствии с системным обобщением формулы Харкевича для плотности информации (18):

(35)

а именно, из (34) и (35) получаем:

(36)

Из (36) очевидно:

(37)

Сравнивая выражения (33) и (37), видим, что числитель в выражении (33) под знаком суммы отличается от выражения (37) только тем, что в выражении (37) вместо значений Nij и t взяты их логарифмы. Учитывая, что логарифм является монотонно возрастающей функцией аргумента, то введение логарифма не меняет общего характера поведения функции.

Фактически это означает, что:

(38)

Из вышеизложенного следует интерпретация системной меры информации (35) с учетом статистики 2 (33): если фактическая вероятность наблюдения i-го при-знака при предъявлении объекта j-го класса равна ожидаемой (средней), то наблюдение этого признака не несет никакой информации о принадлежности объекта к данному классу. Если она выше средней, то это свидетельствует о том, что предъявлен объект данного класса, если ниже - то другого.

Поэтому наличие статистической связи (информации) между признаками и классами распознавания, т.е. отличие вероятностей их совместных наблюдений от предсказываемого в соответствии со случайным нормальным распределением, приводит к увеличению фактической статистики 2 по сравнению с теоретической величиной.

Это дает основания говорить о возможности использования в качестве количественной меры степени выраженности закономерностей в предметной области не матрицы абсолютных частот и меры 2, а новой меры H, основанной на матрице информативностей и системном обобщении формулы Харкевича для количества информации:

(39)

Меру H в выражении (39) в [7] предлагается назвать обобщенным критерием степени сформированности модели Харкевича. Значение данной меры показывает среднее отличие количества информации в факторах о будущих состояниях активного объекта управления от среднего количества информации в факторе (которое при больших выборках близко к 0). По своей математической форме эта мера сходна с мерами для значимости (интегральной информативности) факторов и степени сформированности образов классов и коррелирует с объемом неортонормированного семантического информационного пространства классов и семантического информационного пространства атрибутов.

С помощью вышеописанной математической модели достигается инвариантность результатов ее синтеза относительно следующих параметров обучающей выборки: суммарное количество и порядок ввода анкет обучающей выборки; агропромышленный программный экономический

  • - количество анкет обучающей выборки по каждому классу распознавания;
  • - суммарное количество признаков во всех анкетах обучающей выборки;
  • - суммарное количество признаков по классам распознавания; количество признаков и их порядок в отдельных анкетах обучающей выборки.

В результате обеспечивается высокая степень качества решения задач распознавания на неполных и разнородных (в вышеперечисленных аспектах) данных как обучающей, так и распознаваемой выборки, т.е. при таких статистических характеристиках потоков этих данных, которые чаще всего и встречаются на практике и которыми невозможно или очень сложно управлять.

 
< Пред   СОДЕРЖАНИЕ   След >