Меню
Главная
Авторизация/Регистрация
 
Главная arrow Математика, химия, физика arrow 3D моделирование переноса бинарного электролита в гальваностатическом режиме в условиях электронейтральности

ВВЕДЕНИЕ

Для моделирования переноса бинарного электролита в ЭМС, как правило, используется система уравнений Нернста-Планка и условия электронейтральности [1]. ЭМС функционируют в двух разных электрических режимах: потенциостатическом, когда задается падение потенциала или гальваностатическом режиме, когда задается средняя плотность тока в цепи.

Эти режимы в физическом смысле равноправны, однако экспериментальные исследования удобно проводить в гальваностатическом режиме. Кроме того, известны критические значения плотности тока: предельный ток, ток экзальтации, ток Харкаца и т.д. [2]. Этим критическим значениям плотности тока не всегда удобно теоретически или экспериментально сопоставлять конкретные значения падения потенциала. Так, например, предельному току теоретически соответствует бесконечно большое значение падения потенциала.

Именно поэтому, в настоящее время накоплено большое количество экспериментальных данных полученных для гальванодинамического (гальваностатического) режима, которые требуют анализа.

2

Постановка задачи

Векторная запись системы уравнений Нернста-Планка и условия электронейтральности [1] для переноса бинарного электролита имеет следующий вид:

, (1)

, , (2)

, (3)

, (4)

где - градиент, - оператор Лапласа, - характерная плотность раствора, - электрический потенциал, - плотность электрического тока, - заданная скорость течения жидкости согласно формулам В.Г. Левича, P - давление, T - абсолютная температура, - потоки и концентрации, - коэффициенты диффузии и заряды ионов i-го сорта, F - число Фарадея, R - универсальная газовая постоянная. При этом - неизвестные функции, в общем случае зависящие от времени t и координат x, y а остальные величины считаются известными.

Здесь (1) - уравнение Нернста-Планка с учетом соотношения Нернста-Эйнштейна, (2) - условие материального баланса, (3) - условие электронейтральности, (4) - условие протекания электрического тока.

Как отмечалось выше, система уравнений (1)-(4) удобна только для моделирования потенциостатического режима. В то же время она неудобна для моделирования гальваностатического режима, так как не содержит дифференциального уравнения для плотности тока.

В связи с этим, возникает проблема преобразования системы уравнений (1)-(4) к виду удобному для моделирования гальваностатического режима.

Для этого нужно решить две задачи:

  • 1). Необходимо вывести формулу, выражающую напряженность электрического поля через плотность тока и концентрацию, которая должна использоваться вместо уравнения плотности тока (4).
  • 2). Необходимо вывести дифференциальное уравнение для плотности тока .

Принципиальным моментом при этом является то, что необходимо вывести новое уравнение для неизвестной вектор-функции плотности тока из исходной системы уравнений Нернста-Планка.

В п. 2 для удобства приведено общеизвестное выражение напряженности электрического поля через плотность тока и концентрации [1]. В п. 3 дан вывод уравнения для плотности тока в трехмерном случае. В п.4. предложены различные методы решения уравнения для плотности тока. В п.5 предложены краевые условия для плотности тока.

Выражаем напряженность электрического поля через плотность тока и концентрации

Напряженность связана с электрическим потенциалом выражением:

. (5)

С учетом этого выражения уравнение (1) для потоков приобретает вид:

, . (6)

Умножим уравнения (6) на и просуммируем:

.

С учетом (3) и (4) получаем, что условие протекания электрического тока имеет вид:

. (7)

Из условия электронейтральности, полагая , получаем:

,

,

,

и соотношение (7) принимает вид:

, (8)

откуда

(9)

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Право
Психология
Религиоведение
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее