Меню
Главная
Авторизация/Регистрация
 
Главная arrow Информатика arrow USB радиомодем

USB радиомодем


Аннотация

В статье рассматривается актуальность создания компактного, мобильного радиомодема поддерживающего современный интерфейс USB. Результат разработки представляет собой полудуплексное приемопередающее устройство, работающее с частотно манипулированными сигналами в безлицензионном диапазоне частот. Радиомодем оснащен интерфейсом USB, через который происходит обмен данными, а так же его питание, в качестве антенн применялись малоэффективные четвертьволновые вибраторы. Увеличение дальности радиосвязи возможно путем применения антенн с высоким КНД. При подготовке данной статьи были проведены экспериментальные исследования двух разработанных устройств в городских условиях. Их целью было установление максимальной устойчивой дальности радиосвязи (при прямой видимости) на различных скоростях передачи данных как с исправлением ошибок при приеме, так и без. Экспериментатор, удаляясь от передающего радиомодема, осуществлял мониторинг принятых данных. Применение помехоустойчивого кодирования наиболее эффективно при высоких скоростях передачи данных (до 3 дБ), нежели при низких (1-2 дБ). Увеличение дальности радиосвязи возможно путем снижения скорости передачи - это обусловлено зависимостью чувствительности приемника от скорости манипуляции. Стоит так же отметить, что уменьшение габаритов устройства возможно путем конструктивной модификации.

Ключевые слова: радиомодем, интерфейс USB, подвижная радиосвязь, дальность радиосвязи, помехоустойчивое кодирование, частотно манипулированный сигнал, экспериментальные исследования.

За последние два десятилетия радиосвязь шагнула далеко вперед, особенно в областях, связанных с обменом информацией в цифровом виде [1 - 8]. С каждым годом происходит стремительное увеличение возможностей беспроводных систем: растет пропускная способность, помехоустойчивость, дальность радиосвязи. Доступные сегодня гражданские системы связи на основе Wi-Fi или Bluetooth обладают высокой скоростью обмена информацией и хорошей помехозащищенностью. Однако дальность их действия ограничивается десятками метров. Этот недостаток, а так же специфика и стоимость оборудования не удовлетворяют требованиям некоторых областей использования. К таким областям относятся: передача данных телеметрии, охранные системы и контроль доступа, дистанционное управление объектами, резервирование проводных каналов связи, автоматизированные системы сбора информации, связь с подвижными объектами, конфиденциальная передача информации и др. В этих областях нет необходимости в высокой скорости передачи информации. Первостепенным для них является обеспечение надежного канала связи с мгновенным доступом и высокой достоверностью передачи данных на расстояния в десятки-сотни метров. Перечисленные требования можно выполнить при использовании радиомодемов.

Большинство производимых, в настоящее время, радиомодемов представляют собой громоздкие устройства, как правило, монтируемые стационарно, что исключает мобильность устройств. Кроме этого такие радиомодемы оснащены устаревшим интерфейсом RS-232 и требуют отдельного источника питания, что усложняет процесс установки настройки и эксплуатации оборудования. Типовые характеристики таких радиомодемов приведены в таблице 1.

Таблица 1. Типовые характеристики современных радиомодемов

Параметр

Значение

Напряжение питания

9 - 30 В

Потребляемый ток в режиме приема/передачи при напряжении питания 12 В

80/150 мА

Выходная мощность передатчика

10 мВт

Режим связи

полудуплекс

Диапазон частот

433,92 ± 0,2% МГц, фиксированная

Максимальная скорость передачи данных

19200 бит/с

Скорость работы последовательного интерфейса

1200 - 38400 бит/с

Внешние интерфейсы

RS-232, RS-485

Актуальным являлось создание компактного, мобильного радиомодема поддерживающего современный интерфейс USB. Разрабатываемый радиомодем был нацелен не только удовлетворить вышеперечисленным требованиям, но и расширить область применения в сторону подвижной радиосвязи. радиомодем антенна помехоустойчивый кодирование

Результат разработки представляет собой полудуплексное приемопередающее устройство, работающее с частотно манипулированными сигналами в безлицензионном диапазоне частот 433,075-434,775 МГц с ограничением мощности передатчика на уровне 10 мВт. Радиомодем оснащен интерфейсом USB, через который происходит обмен данными, а так же его питание. Интерфейс USB выступает в качестве физического уровня для интерфейса UART, а радиомодем при этом определяется системой как виртуальный последовательный порт COM. Скорость обмена через интерфейс от 1200 до 115200 Бод. Радиомодем поддерживает скорость передачи информации (скорость манипуляции) от 1 до 300 кбит/с не только с помощью двоичной частотной манипуляции (FSK) [1], но и с помощью спектрально эффективной гауссовской частотной манипуляции (GFSK) [2]. Это достигается благодаря предварительной фильтрации модулирующего сигнала в ФНЧ Гаусса с коэффициентом скругления BTs=0,5. При этом ширина спектра GFSK сигнала по уровню -3 дБ на 45% уже чем у FSK сигнала при прочих равных условиях. Однако столь высокая спектральная эффективность ведет за собой увеличение межсимвольной интерференции, и как следствие растет вероятность ошибочного приема [3].

Рис. 1. Структурная схема радиомодема

Основой радиомодема служит микросхема радиотрансивера ADF7023 производства Analog Devices. Управляющий микроконтроллер Atmel AVR ATmega32A с 32 кБ памяти программ и 2 кБ оперативной памяти и частотой тактирования 11,0592 МГц [9]. Микросхема преобразователя «USB - UART» - FTDI FT232RL [10].

При разработке устройства было уделено внимание вопросу достоверности переданных данных. Радиомодем поддерживает функцию контроля целостности принятых данных путем добавления в передаваемый эфирный пакет поля контрольной суммы (CRC-16) и последующего сравнения принятого поля с вычисленной в приемнике контрольной суммой. Такой подход позволяет лишь удостовериться в корректности данных при приеме и не гарантирует доставку сообщения адресату. Наряду с этим поддерживается возможность коррекции ошибок передачи данных, используя код Рида-Соломона(38, 28) [11]. Устройство способно исправить до 5 ошибочных байтов в принятом искаженном пакете. Применение указанного помехоустойчивого кодирования делает устройство толерантным к зашумленной обстановке или импульсным помехам, и способно дать кодовое усиление до 3,4 дБ [12].

Внешний вид радиомодема представлен на рис. 2.

Рис. 2. Внешний вид радиомодема

Экспериментальные исследования двух разработанных устройств проводились в городских условиях. Их целью было установление максимальной устойчивой дальности радиосвязи (при прямой видимости) на различных скоростях передачи данных как с исправлением ошибок при приеме, так и без. Схема эксперимента выглядела следующим образом. Первый радиомодем, выполняющий роль передающего, устанавливался в окне 4-го этажа здания и подключался к персональному компьютеру. Он осуществлял излучение посылки в эфир с интервалом 1 с. Второй радиомодем, выполняющий роль приемного, использовался в мобильном варианте и был подключен к смартфону. Экспериментатор, удаляясь от передающего радиомодема, осуществлял мониторинг принятых данных. В случае, когда прием происходил без ошибок, приемный радиомодем передавал смартфону уровень принятого сигнала в дБм. По результатам эксперимента была построена таблица 2.

Таблица 2. Результаты эксперимента.

Контроль/исправление ошибок

Скорость передачи данных, кбит/с

Уровень принятого сигнала, дБм

Расстояние, м

CRC-16

10

-107

600

RS(38, 28)

-109

660

CRC-16

50

-104

410

RS(38, 28)

-106

470

CRC-16

100

-101

220

RS(38, 28)

-104

300

Как видно из таблицы 2, применение помехоустойчивого кодирования наиболее эффективно при высоких скоростях передачи данных (до 3 дБ), нежели при низких (1-2 дБ). Увеличение дальности радиосвязи возможно путем снижения скорости передачи - это обусловлено зависимостью чувствительности приемника от скорости манипуляции. Согласно документации на микросхему трансивера, чувствительность приемника составляет -116 дБм при скорости 1 кбит/с [13-15]. Однако, на практике такой показатель труднодостижим из-за зашумленной радиообстановки в данном диапазоне частот.

Во всех случаях в качестве антенн применялись малоэффективные четвертьволновые вибраторы. Увеличение дальности радиосвязи (вплоть до 3-5 км) возможно путем применения антенн с высоким КНД, например типа волновой канал, зигзаг и проч.

Стоит так же отметить, что уменьшение габаритов устройства возможно путем конструктивной модификации. Заменив крупногабаритные компоненты их аналогами в миниатюрных корпусах, и перейдя на многослойную топологию печатной платы размер устройства уменьшится в 2-3 раза. Кроме того, применив микроконтроллер со встроенной аппаратной поддержкой интерфейса USB, например ATmega32U4 в корпусе QFN44, можно отказаться от отдельной микросхемы преобразователя «USB - UART», что одновременно уменьшит и габариты, и стоимость устройства [16,17].

Результаты исследований, изложенные в данной статье, получены при финансовой поддержке Минобрнауки РФ в рамках реализации проекта «Создание высокотехнологичного производства для изготовления комплексных реконфигурируемых систем высокоточного позиционирования объектов на основе спутниковых систем навигации, локальных сетей лазерных и СВЧ маяков и МЭМС технологии» по постановлению правительства №218 от 09.04.2010 г. Исследования проводились в ФГАОУ ВО ЮФУ.

Литература

1. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. Москва: Издательский дом Вильямс, 2003. 1104 с.

2. Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра: Пер. с англ. / Под ред. В. И. Журавлева. Москва: Радио и связь, 2000. 178 с.

3. Анненков А. М. Модель радиоканала с частотной модуляцией и не-прерывной фазой. // Журнал радиоэлектроники. 2011. №7. 17 с.

4. Stephen Hinchy, Kalim Khan Reed-Solomon Forward Error Correction and the ADF7023. URL: analog.com/static/imported-files/application_notes/AN-1292.pdf.

5. Варгаузин В.А., Цикин И.А. Методы повышения энергетической и спектральной эффективности цифровой радиосвязи. СПб.: БХВ-Петербург, 2013. 352 с.

6. Дмитриев А.В., Панас А.И. Динамический хаос. Новые носители информации для систем связи. М.: Физматлит, 2005. 252 с.

7. Алексеев Ю.И., Демьяненко А.В., Семерник И.В. Исследование хаотических состояний автоколебательных систем. Генератор на лавинно-пролетном диоде. // Saarbrьcken, Deutschland: LAP LAMBERT Academic Publishing GmbH & Co. KG, 2013. 133 с.

8. Романов И.В., Измайлов И.В., Коханенко А.П., Пойзнер Б.Н. Нелинейное подмешивание радио и видеосигналов в системе связи с использованием динамического хаоса // Известия Томского политехнического университета. 2011. Т. 318. № 2. С. 53-58.

9. Atmel Corporation, «8-bit Microcontroller with 32KBytes In-System Programmable Flash», 2014. URL: atmel.com/ru/ru/Images/Atmel-8155-8-bit-Microcontroller-AVR-ATmega32A_Datasheet.pdf.

10. Future Technology Devices International Limited, «FT232R USB UART IC», 2010. URL:ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf.

11. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. М.: Мир, 1976. 596 c.

12. Stephen Hinchy, Kalim Khan Reed-Solomon Forward Error Correction and the ADF7023, 2014. URL: analog.com/static/imported-files/application_notes/AN-1292.pdf.

13. ADF7023: High Performance, Low Power, ISM Band FSK/GFSK/OOK/MSK/GMSK Transceiver IC Data Sheet (Rev C, 07/2012) / Analog Devices Inc. URL: analog.com/static/imported-files/data_sheets/ADF7023.pdf.

14. Liam O'Hora, Autonomous IR Calibration on the ADF7023, 2014. URL: analog.com/static/imported-files/application_notes/AN-1278.pdf.

15. Liam O'Hora, Embedded Packet Error Rate Testing on the ADF7023 and ADF7023-J, 2013. URL: analog.com/static/imported-files/application_notes/AN-1276.pdf.

16. И.С. Коберси Анализ работы подсистемы групповой синхронизации в синфазном и асинфазном режимах широкополосной системы радиосвязи с широтно-импульсной модуляцией // Инженерный вестник Дона, 2014, №4 URL: ivdon.ru/ru/magazine/archive/N4y2014/2759.

17. Жуков К.Г. Распознавание типа модуляции сигналов цифровых линий связи // Инженерный вестник Дона, 2009, №2 URL:ivdon.ru/ru/magazine/archive/n2y2009/130

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
 
Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Право
Психология
Религиоведение
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее