Модель объекта первого порядка с запаздыванием

Динамическая модель первого порядка с запаздыванием представляет собой неоднородное дифференциальное уравнение первого порядка:

(2.4)

где T - постоянная времени объекта;

k - коэффициент передачи при 50% номинального режима;

- время запаздывания.

Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:

(2.5)

где y0=0 - начальное состояние выхода объекта;

k.x=yуст.=10 - установившееся состояние выхода объекта.

Проведем преобразования, аналогичные модели без запаздывания

или запишем в виде системы :

(2.6)

где берется из табл. 7.

Так как , и , то все уравнения содержащие эти элементы в расчете участвовать не будут.

Решим систему (2.6) методом наименьших квадратов. Составим матрицы:

- искомых величин:

- правой части системы:

- левой части системы:

  • - произведение
  • - произведение

Таким образом получили матричное уравнение:

Находим главный определитель:

Подставляя матрицу поочередно в первый и второй столбец матрицы , находим вспомогательные определители:

Находим постоянную времени и время задержки:

Таким образом динамическая характеристика первого порядка с запаздыванием будет иметь вид:

Вычислим аналитические значения функции, их отклонения от экспериментальных значений, а также квадраты отклонений, причем значения функции при учитывать не будем. Результаты сведем в табл. 8.

Таблица 8

Результаты расчета

i

1

2

3

4

5

6

7

8

9

10

yi

0

0

0.5

0,71

0,8

0,91

0,98

0,99

0,995

1

yiанал

0

0

0.199

0.565

0.764

0.872

0.93

0.962

0.98

0.989

yi

0

0

0.301

0.145

0.036

0.038

0.05

0.028

0.015

0.011

0

0

0.090493

0.020928

0.001291

0.001448

0.002451

0.000769

0.00024

0.000124

Далее находим сумму квадратов отклонений:

.

Так как сумма квадратов отклонений у модели с запаздыванием меньше, чем у модели без запаздывания, то ее использование позволяет более точно описывать протекание переходного процесса.

Расчет на ЭВМ моделей более высоких порядков показывает, что наименьшее значение суммы квадратов отклонений будет у модели второго порядка. Поэтому в дальнейших расчетах будем выполнять все действия именно для модели второго порядка.

Ниже приведен проверочный расчет динамической модели объекта первого порядка с запаздыванием и модели второго порядка с запаздыванием на ЭВМ в системе MathCad.

 
< Пред   СОДЕРЖАНИЕ   Загрузить   След >