Заключение

титан нестехиометрический теплопроводность

Используя первопринципные расчеты на основе теории функционала плотности мы изучили энергию адсорбции вольфрама (азота, кислорода), локальную атомную структуру, термодинамические и электронные свойства нестехиометрических систем R/TixB2-y(0001) (R= W, N, O) для разных реконструкций поверхности в сопоставлении со стехиометрическими системами R/TiB2(0001). Нами рассмотрены более тридцати реконструкций поверхности диборида титана, обусловленных схемой расположения на ней адсорбата. Впервые показано, что адсорбция вольфрама (азота, кислорода) на малодефектных поверхностях TixB2-y(0001) в разных связывающих позициях приводит к существенной перестройке локальной атомной структуры и зонного энергетического спектра. Дальнейшие исследования процессов хемосорбции рассмотренных систем обеспечат прогресс в атомистическом понимании механизмов формирования наноструктур на поверхности керамик после воздействия лазерной плазмы.

Литература

  • 1. Bates S.E., et al. Synthesis of titanium boride TiB2 nanocrystallites by solution-phase processing // Journal of Materials Research. 1995. №10(10). pp. 2599-2612.
  • 2. Basu B., Raju G., and Suri A. Processing and properties of monolithic TiB2 based materials // International Materials Reviews. 2006. №51(6). pp. 352-374.
  • 3. Mayrhofer P., et al. Self-organized nanocolumnar structure in superhard TiB2 thin films // Applied Physics Letters. 2005. №86(13). p. 131909.
  • 4. Лянгузов Н.В., Дрюков А.Г., Кайдашев Е.М.,. Галий И.В. Получение и исследование морфологии массивов микро- и наностержней ZnO на подложках Si с пленочным подслоем ZnO // Инженерный вестник Дона, 2011, №4 URL: ivdon.ru/ru/magazine/archive/n4y2011/522.
  • 5. Несветаев Д.Г., Кайдашев Е.М., Пузиков А.С., Импульсное лазерное напыление ZnO наноструктур // Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1885.
  • 6. Topor L. and Kleppa O.J., Enthalpies of formation of first-row transition-metal diborides by a new calorimetric method // The Journal of Chemical Thermodynamics. 1985. №17(11). pp. 1003-1016.
  • 7. P. Giannozzi, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials // J. Phys.: Condens. Matter. 2009. №21. p. 395502 .
  • 8. Ruberto C. and Lundqvist B.I., Nature of adsorption on TiC (111) investigated with density-functional calculations // Physical Review B. 2007. №75(23). p. 235438.
  • 9. Lцwdin P.-O., On the Nonorthogonality Problem*, in Advances in Quantum Chemistry. Academic Press. 1970. pp. 185-199.
  • 10. Han Y., et al. Electronic and bonding properties of TiB2 // Journal of Alloys and Compounds. 2007. №438. pp. 327-331.
  • 11. Clementi E., Raimondi D., Reinhardt W. Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons // The Journal of Сhemical Physics, 1967. №47(4). pp. 1300-1307.
  • 12. Magnuson M., et al. Bonding mechanism in the nitrides Ti2AlN and TiN: an experiment and theoretical investigation // Physical Review B. 2007. №76. p. 195127
  • 13. Ilyasov V.V., et al. Adsorption of atomic oxygen, electron structure and elastic moduli of TiC(0 0 1) surface during its laser reconstruction: Ab initio study // Appl. Surf. Sci. 2015. №351. pp. 433-444.
  • 14. Shuyin Y., et al. Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study // Phys. Chem. Chem. Phys., 2015. №17. pp. 11763-11769.
  • 15. Локтев Д., Ямашкин Д. Основные виды износостойких покрытий // Наноиндустрия. 2007. №5. С. 24-30.
 
< Пред   СОДЕРЖАНИЕ   Загрузить