Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow Специальные измерения

Измерение интервалов времени

Решение многих научных и технических проблем связано с измерением интервалов времени, разделяющих два характерных момента какого-либо процесса. Измерения интервалов времени необходимы при разработке и испытании всевозможных схем задержки и синхронизации, при исследовании цифровых систем, многоканальных систем с временным разделением каналов, применяемых в технике связи и радиотелеметрии, устройств телеуправления и автоматической коммутации, аппаратуры, используемой в ядерной физике, вычислительной технике и т. д. Подобные измерения особенно нужны в приборостроении, поскольку во многих случаях используемые в ней преобразования аналоговых величин в цифровой код осуществляются в результате промежуточного преобразования измеряемой физической величины в интервал времени.

Методы измерения интервалов времени разнообразны. К числу наиболее известных относятся методы дискретного счета преобразования интервала времени в цифровой код, временных разверток, нулевой и совпадения. Процесс измерения интервалов времени можно осуществить многими методами. Рассмотрим некоторые из них.

1) Метод последовательного счета. Измерение заключается в сравнении измеряемого интервала времени Дtx с дискретным интервалом, воспроизводящим единицу времени. Для этого измеряемый интервал Дtx заполняется импульсами с известным образцовым периодом следования Tобр<<tx, т. е. интервал преобразуется в отрезок периодической последовательности импульсов, число m которых, пропорциональное Дtx, подсчитывается. Импульсы, заполняющие интервал Дtx, принято называть счетными и обозначать период их следования Tсч. Таким образом, Дtx = m ·Tсч.

Для аппаратурного осуществления описанного метода необходимы генератор счетных импульсов и счетчик, между которыми должна быть включена схема, открывающая счетчик на время Дtx. Эту функцию выполняет временной селектор, представляющий собой логический элемент И (рисунок 1).

Счетные импульсы, непрерывно поступающие на вход 1 временного селектора, могут проходить в счетчик только тогда, когда на входе 2 селектора действует стробирующий импульс. Он формируется из исследуемого сигнала устройством, содержащимся в блоке формирования и управления. За время действия стробирующего импульса, длительность которого равна измеряемому интервалу Дtx, счетчик считает импульсы генератора. Число импульсов, зафиксированное счетчиком и наблюдаемое с помощью цифрового отображающего устройства - дисплея, однозначно соответствует измеряемому интервалу Дtx.

В измерительной технике импульс, вырезающий участок импульсной последовательности или задающий продолжительность счета, принято называть временными воротами.

Таким же способом можно измерить и длительность прямоугольного импульса фи. В этом случае исследуемый импульс подается непосредственно на вход 2 селектора. Временные ворота получаются равными длительности фи.

Интервал времени можно преобразовать в пропорциональное число импульсов и с помощью генератора ударного возбуждения. Для этого на вход последнего нужно подать стробирующий импульс, длительность которого равна измеряемому интервалу времени, т. е. фстр = Дtx. За время действия стробирующего импульса фстр генератор вырабатывает пакет импульсов, число p которых - однозначная функция частоты генерируемого сигнала и длительности стробирующего импульса: p = фстр · F.

2) Измерение методом сравнения временных интервалов

Измеритель временных интервалов (ИВИ) предназначен для измерения временных интервалов периодических процессов микросекундного диапазона длительностей. В основу работы прибора положен компенсационный метод измерения временных интервалов. Измеряемый интервал сравнивается с известным; при этом известный временной интервал задается источником временных сдвигов (ИВС), а момент компенсации измеряемого временного интервала образцовым фиксируется с помощью осциллографического индикатора. Процесс измерения временных интервалов сводится к следующему: начало измеряемого интервала, подаваемого на вход системы вертикального отклонения индикатора, совмещают с визирной отметкой на экране ЭЛТ. Затем изменением задержки задержанного импульса ИВС, запускающего развертку индикатора, конец временного интервала совмещают с той же отметкой. Измеряемый интервал равен значению изменения задержки. Источник временных сдвигов позволяет получить два импульса с регулируемым временным сдвигом между ними: запускающий импульс - для запуска исследуемого устройства; задержанный импульс - для запуска ждущей развертки электронно-лучевого индикатора ИВИ. Принцип действия поясняется структурной схемой (рисунок 3).

Кварцевый генератор предназначен для создания опорной импульсной последовательности. Делитель частоты вырабатывает импульсы, определяющие период следования выходных импульсов. С помощью блоков переменной задержки Й и ЙЙ осуществляется задержка дискретно через 100 нс запускающего и задержанного импульсов в диапазонах соответственно 0 - 900 нс и 0 - 999900 нс путем выбора нужных импульсов опорной последовательности 10 МГц. Переменная задержка предназначена для перекрытия диапазона временных сдвигов 0-100 нс задержанного импульса. Причем дискретные сдвиги по 10 нс создаются с помощью кабельной линии задержки, а сдвиги дискретно через 1 нс и плавно с помощью электронной схемы задержки. Селекторы предназначены для исключения нестабильности работы блоков переменной задержки Й и ЙЙ. Блоки взаимодействуют следующим образом. Период следования выходных импульсов после делителя определяет период следования выходных импульсов ИВС (запускающего и опорного). Этим импульсы открывают входы блоков задержки Й и ЙЙ в каналах запускающего и задержанного импульсов, на которые подаются опорные импульсы. Блоки отсчитывают нужное количество импульсов, соответствующее установленной задержке, и открывают селекторы. Происходит выбор нужных опорных импульсов, которые в канале запускающего импульса поступают непосредственно на выходной формирователь, а в канале задержанного импульса - предварительно на электронную схему задержки (задержка ЙЙЙ). Описанный метод измерения временных интервалов реализован в измерителе И2-26, который обеспечивает измерение задержки между одинаковыми сигналами на одном уровне в диапазоне от 10·10-9 до 10·10-3 с.

3) Нониусный метод. Для измерения временных интервалов с субнаносекундным разрешением широко применяются нониусные измерители. Наиболее распространены комбинированные измерители, в которых временной интервал «грубо кодируется» импульсами опорного генератора, а интерполяция отрезков между границами интервала и фронтами импульсов опорного генератора производится нониусным методом. Для таких измерителей актуальна задача обеспечения точной стыковки основной и интерполирующей шкал, решаемая довольно сложными техническими приемами.

Эта проблема отсутствует при использовании «модифицированного» нониусного метода, в котором подсчет импульсов опорного генератора производится между моментами совпадения фаз опорного и нониусного сигналов. Его основное преимущество - значительное снижение погрешности ?2..

Содержание:

Мирский Г. Я. Электронные измерения 4-е изд перераб. и доп. М. Радио и связь, 1986. 440 с. ил. А. С. 9711527328 RU 2127445 C1 кл. G04F1004 РФ Быстродействующий нониусный измеритель временных интервалов Гурин Е. И Дятлов Л. Е Конов Н. Н Назаров В. М. опубликовано 10.03.1999 А. С. 9711527328 RU 97115273 А кл. G04F1004 РФ

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ
 

Предметы
Агропромышленность
Банковское дело
БЖД
Бухучет и аудит
География
Документоведение
Естествознание
Журналистика
Информатика
История
Культурология
Литература
Логика
Логистика
Маркетинг
Математика, химия, физика
Медицина
Менеджмент
Недвижимость
Педагогика
Политология
Право
Психология
Религиоведение
Социология
Статистика
Страховое дело
Техника
Товароведение
Туризм
Философия
Финансы
Экология
Экономика
Этика и эстетика
Прочее